we can use the quadratic formula:
$$x=\frac{-\textcolor{#5cb85c}{b} \pm \sqrt{\textcolor{#5cb85c}{b}^2-4\textcolor{#2d6da3}{a}\textcolor{#d9534f}{c}}}{2\textcolor{#2d6da3}{a}}$$
Step-By-Step Outline
Find a, b, c
Plug in a, b, c
Simplify
Example Problem
Let's see how to use the quadratic formula to solve:
$$2x^2-5x-3=0$$
Step 1: Find a, b, c
Our equation looks like:
$$\textcolor{#2d6da3}{a}x^2+\textcolor{#5cb85c}{b}x+\textcolor{#d9534f}{c}=0$$
Let's find a, b, c:
a is the coefficient of x^2
b is the coefficient of x
c is the constant term
So for our equation:
$$2x^2-5x-3=0$$
$$\textcolor{#2d6da3}{2}x^2+\textcolor{#5cb85c}{-5}x+\textcolor{#d9534f}{-3}=0$$
$$\textcolor{#2d6da3}{a=2}$$
$$\textcolor{#5cb85c}{b=-5}$$
$$\textcolor{#d9534f}{c=-3}$$
Step 2: Plug in a, b, c
Let's plug in values a=2, b=-5, c=-3 to solve 2x^2-5x-3=0:
$$x=\frac{-\textcolor{#5cb85c}{b} \pm \sqrt{\textcolor{#5cb85c}{b}^2-4\textcolor{#2d6da3}{a}\textcolor{#d9534f}{c}}}{2\textcolor{#2d6da3}{a}}$$
$$x=\frac{-\textcolor{#5cb85c}{(-5)} \pm \sqrt{\textcolor{#5cb85c}{(-5)}^2-4\textcolor{#2d6da3}{(2)}\textcolor{#d9534f}{(-3)}}}{2\textcolor{#2d6da3}{(2)}}$$
Step 3: Simplify
We then simplify step-by-step:
$$x=\frac{5 \pm \sqrt{25-(-24)}}{4}$$
$$x=\frac{5 \pm \sqrt{49}}{4}$$
$$x=\frac{5 \pm 7}{4}$$
Separate the plus-minus symbol into two solutions:
$$x=\frac{5 + 7}{4} \text{\enspace\enspace or \enspace\enspace} x=\frac{5 - 7}{4}$$
$$x=\frac{12}{4} \text{\enspace\enspace or \enspace\enspace} x=\frac{-2}{4}$$
$$x=3 \text{\enspace\enspace or \enspace\enspace} x=-\frac{1}{2}$$
Answer
So by using the quadratic formula, we find the answer:
$$x=3 \text{\enspace\enspace or \enspace\enspace} x=-\frac{1}{2}$$
Get Step-By-Step Help with the Quadratic Formula Calculator